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METHOD OF DESIGNING CASCADE BLADES WITH PRESCRIBED VELOCITY
DISTRIBUTIONS EN COMPRESSIBLE POTENTIAL FLOWS

By GEORGE R. COSTELLO

SUMMARY

By use of the assumption that the pres=sure-vohm.erelation is
linear, a solution to the problem of designing a cascadefor a
given turning and with.a prescribed relocity distribution along
the blade in a potential$ow of a compressibleperfectfluid was
obtained by a.method of correspondence betweenpokmtial$ows
of mwnprewibkand incompressible$uids. The dew”gningof a-n
i~olatedaifm”l un”th.a prescm”bedveloci~ydistn”butionalong the
airfoil is considered as a .speet”alcase of the cascade.

If the prescribed celocity distribution. is not theoretically
attainable, the method prorides a means of modifying tlk dis-
tribution so as to obtain a physically signi$cant bladeshape.
Numerical examples are included.

INTRODUCTION

In order to control boundary-layer growth, tmmsit.ion,and
separation in the design of a cascade for a given turning, it is
advantageous to prescribe the velocity along khe blade as a
function of the arc length along the blade and then to com-
pute the blade shape. For an incompressible fluid, several
solutions to this problem ha-re been obta.inecl. (See refer-
ences 1 to 3.J

A similarsolution for the tmo-dimensions.lpotential flow of
a compressible perfect fluid was de~eloped at, the NACA
Lewis laboratory during 194849. This solution is based
on the assumption that the pressure-volume relation ia
given by a linear a.pprosimation to the isentropic curve
instead of the true curve. The flow pattern of the com-
pressible fluid is obtained by a t.ra.nsfornmtionfrom a cor-
responding flow of an incompressible fluid using the tram.-
formation developed by Lin (reference 4).

The method of solution consists in using the free-stream
velocities upstream and downstream of the cascade and the
prescribed dimensionless velocity distribution along the
blade to select a suitable incompressible potential flow about
the unit circle and then to determine the mapping function
that transforms this incompressible flo-winto a compressible
flow about. a cascade of airfoils. The image of the unit.
circle under this mapping gives t-he cascade tit.h the pre-
scribed velocity distribution along the blade, provided the

~elocity distribution is theoreticdly attainable. If the
velocity distribution is unattainable, methods are given for
modifying the distribution so that a physically signitlcant
profile is obtained.

The problem of clesia- im isolated airfoil -Ah a pre-
scribed -reloeity distribution is considered as a special case
of the cascade.

THEORY OF METHOD.
CASCADE

In reference 4, Lin shows thut if the pressure-density rela-
tion is (Symbols used in this report are defined in the
appendk)

p=cl–: (1)

t-hen the compressible potential flow about a cascade of
blades can be obtained by transforming the incompressible
flow about the unit circle in the folIowing manner: The com-
plex potential function ~(~) for the incompressible flow due
to two complex sources at (=al and (_=az outside the unit
circle \fl=l is

()
F(~)=A loge (r–a-,)+x loge f–~ +-B Iogc (f–-aJ+-

(q

where A and B are complex constants with Re A 20 and
Re A= –Re 2?, and D is an arbitrwy complex constant.
The bar indicates the complex conjugate. The mapping
between the z-plane and the t-plane deiined by

dz = g(r)&–aJ-l(~–aJ-’ d~–~ [F’(t)] ’~)~)]-l&–al)&–aJ d~

(3)

gives a compressible flow with the linear pressure-volume
relation past a straight. cascade of ident.iml b~ades in the
z-plane tit,h the velocity potential #Cand stream function
#c given by

M-%=lw (4)
559
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provided that g(~) is chosen to satisfy the following re-
quirements:

(a) The function g(~) is reguhw in closed region 1?
defined by 1~1>1.

(b) The function g(~) # Oin 1?, except ‘possibly at
one point on the circle where I“(c) = O (the order of
the zero not to exceed 1).

(c) Along the circle lf~=l $ dz=O.

(d) The function g(f) satis;ies the inequality
][F’(~)][g(f)]-’( ~–aJ(f-aJ 1<2 in R.

(5)

‘1%e magnitude g and the direction a of the dimensionless
velocity at any point in the s-plane are given by

2q _ia_F’(f)(~–aJ( f–a2)

l+~~e – 9(H
(6)

In orckr to use this transformation in designing a blade
with a prescribed dimensionless velocity distribution along
the blade in a cascade, the prescribed conditions m-e used to
select a suitable incompressible flow about the unit circle
and to determine the function g(t).

The prescribed conditions are t~e velocity distribution on
the airfoil, the upstream velocity qle’”1 sind the downstream
velocity qaefaz. The upstream and downstream velocities are.
related by the isentropic-ffow equations with ~= —1. This
relation is

(7)

where the axis of the cascade has been taken along the y-axis
for convenience and the flow is from left to right. (See fig. 1.)

d
?/

FIGURE l.—Casoade in z-plane.

FLOW IN CIRCLE PLANE

The flow of an incompressible fluid about the unit circle k
selected by determining the constants A, B, al, and az in the
complex potentinl

()
F(f)=zl log, Q-–q)+z log. f–+ +

()
B Iog, (~–a2)+2Jlog, + +D (2)

from the given conditions. The consixmts A and B arc
obtained from the upstream and downstream vclocitics nnd
the circulation and then al and az are determined by the
range of the potential on the airfoil.

Circdation and cascade spacing,—The magnitude 01 t.hc
prescribed dimensionless velocity q along the tiirfoilis given
as a function of the arc length [g= g(s)] where the totul mc
length is taken to be 27r and is mensured from the trailing
edge along the lower surface. If Q(s) is clefineclby

(?(s)= –q(s) O<s<sn

Q(s)=g(s) .sn~s<27r

where S. is the leading-edge stagnation point,

$I$C(S)=J: w) ds

r.=
J

: Q(S) ds

(8)

then

(9)

(10]

The circulation a.nclthe spacing of the CMCRCICme related
by

d=
I’c

ql sin a,— gz sin cu
(11)

where d is the spacing. The quantities I’,, ql, qz, al, and
az are known so that the spacing is cletcmnined.

Determination of A,—The value of d from equation (11)
is used to cvaluat e ii and B because the spncing is nlso

given by the absolute value of 6 d~ takcu nlong a path

around a, or a,. (See fig. 2.) !&e nxis of the cnscndc hm
been taken along the y-axis so thnt

(12)

.5quofion

----- (12)
— (13)

FIGURE2.-Paths of Integration in f-plane.

The second equality comes from t-he fact that the residues
at infinity of

9(t) ({–d-U-d-1
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and
[F’(r)]’ [g(r)]-’ (~–a,) (~–a.’) ‘

in the expression for d= in equation (3) are zero and
consequently

where c is the unit circle. But by equation

SO that

(13]

(5C),

(14)

The evaluation of equation (12) in terms of the potentitd
F(~] is

(15)
But “

so t=hatequation (15} redu~es t.o

‘(a’ -T’:L72)12” “n‘“d=2Ti(a,–aJ 4

‘2”’[(U!%++%FI
At ~=a,, equation (6) becomes

%1 -i., _A(al–a2)
l++l+g?e – g(q)

which on writing

reduces to
g(a.J =4 ~ia,

(al–a,) K,

Substitution of the values horn equation
tion (18) gives

“=2”’[(+%”4
Hence, the bracketed expression in equation
a real number and

(18)

(19)

(~ 1)

(21) must be

(22)

where

From equation (22),

(4–K,2)IrfiA = _tm ~,
(4+ K,91h?A

or

ImA=-~ReAtan a,—

ImA=—3~l+q12ReA tan al .

which gives the relation between Re A and lrn A.
Substitution of the value of lm A from equation

equation (23) yields

“2=(WYR’’A+C*YR’’AU2”U2”’

‘(%9’~’2*@’2”’
or

4+K?—Re.4 [see a,]r= ~K1

Hence

‘=2T
(

4 +K12
~ReA [see all

)

Substitution of the value of d from equation (26) in
equation (11) gives

and Re A is now determined. By use of this value of Re A.
in equation (25), lna A is obtained. Hence A is completely
given by equations (27) and (25).

Determination of B.—??rom equation (12)

g(aJ 1 B (a2—aJ %-i
‘d=–2Ti(a2–aJ+Z ~(aJ

=-2.i ‘~-~-EK2e~.2

‘-2wB:%’9ei=21
\ where
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The bracketed expression must be real, so that

(4–K/) Im B=–tan cq
(4+ K,? Re B

(28)

But
ReB=–ReA (29)

and equation (28) can be written

~m B 4+K/
‘4 -K22

ReA tan az

Consequently, B is determined by equations (29) and (30)
because Re A is knoivn from equation (27);

Determination of al and az.—After A and B are known,
the p6ints al and a2 are to be selected to satisfy the single
condition that the range of potential on the circle must equal
the range of potential on the airfoil, that is,

4@d-#,(&)=F[ei (@t+Z”)]–1’(d%) (31)

where fl~and 19nare the.”tr~iling-edge and leading-~dge stag-
nation angles, respectively. This condition is onIy one
equation in two unknowns, al and IZZ;consequently, the values
of al and az are not uniquely determined. By imposing an
additional restriction that al and az are real and .

al= —a2 (32)

unique values are obtained for al and azin all cases. In par-
ticular problems, however, some other restriction may be
more useful, such as aesigrdng a definite value for al and
computing aa.

With the restriction given in equation (32), it is possible
to express 8~and &in terms of al and substitute these values
in equation (31), but the resulting equation cannot be solved
explicitly for al.

One method for obtaining a, is as foIIows: Let

al=ek

a2=—eZ
}

(33)

where k> O. Then equation (2) becomes

or, for points on the unit circle f= e{@ “

Hence, @(8)may be written in the form

4(6)= – 2ReA tanh-l %+(Im A+.Lm B) tan-l ~+tlmh k

(~mA–Ire B) tan-’ - +2ReA tanh-’ -.–

(Im A+Im B) tan-’ -–(.Im A-Ire B) Lan-’ -.

(35)

where D has been chosen to make @t(01)= O and the angk
convention is

‘: <tm-ls~~h ~<~

tan e
and tan-l —ta.nh k

is taken in the same quadmnt and smnc

direction as t?.
The velocity on the circle 0(L9)is

2ReA sin 6 cosh k +(Im A +Im B) tanh k sees O-
?)(6)=

cosh2k —COS28 tanh2k+ tm12@ +

sinh k cos 6
(~mA–~~~) si~z k+sinz ~ - . ‘–

2
~[2ReA sin 6 cosh k+

‘cosh 2k -COS 2e

(Im A–Ire B) cos 0sinh k+(Im .4+Im B) sinh k coslI k]
(3G)

Equation (36) can be further simpli.fledby Mining X as

tan~=(~m‘–1W5 sinh ~
2ReA cosh k

(37)

–; <h<;

Then

[
2 ~14Re2Ac_osh2k+(Irn .A—..IrnBJ2si;~ k ‘”. ‘“

v(t?)= “cosh 2k—cos 28
sm 0 cos X+

(~m.4+Irn IJ siti JC@ k. ----
Cos Osinx+

~4Re2A cosh2k+Um A–hnB)2 sinl~%““l
4ReA cosh k sec A sin ~o+~)+(~m A+lm B) sinh k

= cosh 2k—cos 2 e [ 21ieA SW h 1
(38)

The stagnation angles 8, and % are therefore the roots of the
equation

–(lm. A+Im B) sinh k
sin (0+ k)= 2Re.4 sec h

(39)

The desired value of k is obtained as follows:
(1) Aesume a wdue of k.
(z) Compute x by equation (37).
(3) Obtain 8, and Onfrom equation (39).
(4) Compute 4,(64+2T) – 4,(%).
(5) Repeat (1) to (4) several times to obtain a plot of

@d@4+2r) –di(%) as a function of k.
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(6) Iderpohite to obtain k such that

W,+-zd – ‘+4%)= Mm – M.%)

With k determined, the flow about the circIe is known.
The potential @@) and the velocity u(6) for points on the
circle are giren by equations (35) and (38), respectively.

FUNCTION g(~)

The function g(r) can be computed for points on the unit
circle by using the prescribed velocity on t-heairfoil and t-he
velocity on the unit circle to cleterrninethe real part of g(f).
The imaginary part of g(~) can then be computed by Poisson’s
integral. Became of the restrictions imposed by the given
conditions, however, g(~) is actually obtained in a slightly
different manner, as shown in the following sections.

Airfoil with pointed trailing edge.—If an airfoil with a
pointed trailing edge is desired, t-heng(~) must vanish a.t the
traihg-edge stagnation point ~=eiot. Hence, g(f) can be
-mitten in the form

(40)

whexe~(~) is regular in the exterior of the unit tide and

n.=1-~ (41)
T

vihere 6 is the included trailing-edge angle of the a.irfol
{See reference 4.) ‘

Values of g(+ e~.—Because. the velocities are given for the
compressible flow upstream and downstream of the.cascade,
the value of g(~) at r=+ et is determined from equation (6),

In order that g(~) have these values, jk) iS Wtten iKIthe

form

where

and H(r) is regular in the exterior of the unit circle with

The restriction on H(f) imposed by equation (45) is neces-
siu~ so that ~(~) (equation (43)) W be regular. By use of
equation (43), -g(~) is expressed as

and g(f) wilI be known when ~(~) is determined. For the
actual computation of the blade shape, ordy the values of
g(~) on the unit circle are needed. Hence, it is only neces-
sary to compute ~(~) for points on the circle. If clesired,
the values of H(r) for any point in the exterior of the circle
can be obtained from the values on the circle by Poisson’s
integral.

Determination of Re H on circle.-By equation (4), the
potentiak 4.(s) and @i(6) are equal at correspond~m points.
Thus, by matching these potentials a correspondence is
established between points along the airfoil arc a.ncl the
circle angles; that,is, .s= s(d). By use of this corresponclencej
the magnitude of the prescribed velocity along the airfoil
is obtained as a function of the circJeanggleq=g(t?). Hence,
by ta~~ absolute values of equation (6),

2@) =lF’(ei~(ei’–e9 (e’’+e~l

1+.JW 19(ef91
(47)

for points on the circle. Substitution of the value of g(f)
from equation (46) tit-h ~=efo and replacing ~(e’”) by the
velocity v(8) (equation (38)) on the circle give

2 g(o)

1+ Jl+q(ey

eklu(d)[(2 cosh zk—2 cos 2 o)+.
3 [Re C(tie)+(2eosh2k-2 cc62e)Rc H(ei4)][2–2 cos (f?,-@)]’e

or, with the equation solved for ~ H(efo),

{ }

~og~ l@)l(2 cosh 2k–2 COS26)* _Re ~(e,q+k

ReH(ei~=
K(6)[2–2 COS(6,–t?)];

2 msh M-2 cos2e
(48)

where

(49)

Restrictions on Re EI(ei~.-Equation (45) imposes restric-
tions on the values of Re H(e’q, as shown by writing ~(~)
in the form

im)=ho+++++ “ “ . (50)

where ho, hl, hz, . . . are complex constants.

For points on the circle, equation (50) becomes

H(ei~=Re H(ef?+i Im .H(e’e)

=Re h,+~(Re hj cos jtH-Im hj sin j8)+

i [Im ho+~l(h h~cos jiLRe h~sin jtl)] (51)
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Equation (51) is a Fourier expansion and

s,
Re ho=~ ~% Re H(e’”) dfl

J
&7 hi=:. oh lie H(de) cos O.d(l

J
Ina hi=: ~k Re H(ego)sin 0 d~

But equation (45) requires that

Re h,=Im ho=Re hl=Im hi=O

Consequently, Re H(e*) must satisfy the equations

J
2“ Re H(g~O)dd=()

0

‘J
* Re H(e44)cos o d9=0

o

J

.%
Re H(e’”) sin @d6=0

o

(52)

(53)

(54)

(55)

(56)

(57)

(58)

Adjustment of Re H(efe). —If the values of Re H(eiu) from
equation (48) do not satisfy equations (56), (57), and (58),
the values must be adjusted untfl the conditions are
satisfied. One method for adjusting the function is to
define Re &(e’@) by

Re fi(ei~=li!e H(ef~–Re ho–Re h, cos & Im h, sin 6 (59)

where Re hof Re ht, and Im”hl me given by equations (52),
(53), and (54), respectively. The modified function Be l?(eie)
will then satisfy equations (56), (57), and (58). This method
of modifying Re H(e ‘d), however, changes the velocity distri-
bution aII along the profle and, if the correction terms in
equation (59) are not small, these changes in the velocity may
be extensive because

Zq
l+~l+~z

2q ~(Beho+Rehlcos8-EIsnhlsine)(2cosh2k-2ms20)

‘1+~

where ~ denotes the new ‘velocity, In some cases, conse-
quently, Re %?(e*e)can best be adjusted to satisfy the require-
ments by adding to Re IZ(eie) odd and even funcjions that
have nonzero values only in smallneighborhoods of the points
6=0 and d=—~. The particular functions to be added to
Re H(ei@) and their range of values depend on the specific
problezn; no general method can be given for determining the
functions.

Determination of Im H(e’e) .—After Re H(efO) satisfying
equations (56), (57), and (58) is obtained, the function
lm lY(e*) is given by Poisson’s integral (refcrcncc 5)

();–8
Im H(e’@)=& SotiRe H(ei’) cot ~ dr (60)

where the constant term in Poisson’s integral has been taken
as zero so that

J
Im ho=; o‘Im H(e4~ dO=O

as required by equation (55). Hence, H(e{e) is detcrmincd
for points on the unit circle by

H(e’@)=Re H(ef~+i Int H(ei~

Adjustment of g(ei~.—By use of thew values of H(ei~ in
equation (46), g(~) is determined for points on the circle,

g(ei~= [1 — et (% –0] n e [C(e’V+(2 eosh2k-2 cos20) IJ(eit)] (61)

Becausti-of the adjustments in H(eiO), g(ei~) may no longer
satisfy condition (5d). If g(er~)does not satisfy t.hcincqual-
ity for points on the circle, then the values of o(t) cnn ?.)c
adjusted to satisfy the inequality by changing the second or
higher harmonic terms in ZZ(~)or by other mc.thods. If the
prescribed conditions are theoretically a.ttainable, however,
then no modification is necessary, not even in l?c H(ef@).

BLADE COORDINATES

By use of the values of g(eid) that.satisfy all conditions, the
blade coordinates are obtained from integration of equa-
tion (3), that is,

()which, on replacing F’(ei~ by u(t?)e-i ‘~ anclwriting

g(eio)= gl (0)eiga(e}
reduces to

.s=
S[

g1(8)(e2i@—eu)-1--(e2’’-e7]ef~+’+
(62)

COMPUTATIONAL PROCEDUIU4 FOR CASCADE

An outline of the procedure for computing the blrdc sha~c
is as foIIovvs:

(1) Obtain +,(s) and I’. from equntions (9) and (10),
respectively.

(2) Compute Re A, Im A, a~d lm B by equations (27),
(25), and (30), respectively.

(3) Obtain k as outlined in the text. Compute #,(t?) and
v(8) by equations (35) and (38), respectively.

(4) Plot @c(s) and #J8). By compming the abscissas for
equal values of these potentials, obtains os a function of O,
which permits writing the prescribed velocity g as a function
of 8, Q= Q(d).
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(5) Compute Re H(ew) by equation (48) and determine
Re hO,Re h,, and Inz h, by equations (52), (53), and (54),
respectively. If these values are not zero, then adjust
Re H(efe) either by equation (59) or by addition of functions
so that Re lZ(ef@)satisfies equations (56), (57), and (58).

(6) Obtain Im H(eie) by equation (60), using the adjusted
values of Re lZ(eJo).

(7) Obtain g(e”) by equation (61). The function g(er’)
must satisfy inequtity (5d) for points on the c-ircIe. If
g(ew) does not satisfy the ineqmdity, adjust g(eti) as sug-
gested.

(8) After g(efo) has been adjusted to satisfy all conditions,
the blade shape is obtained by integrating equation (62).

ISOLATED AIRFOIL

The problem of designing m isolated airfoil with a pre-
scribed velocity distribution along the airfoiI in a com-
pressible potential flow with a given free-stream velocity can
be considered as a degenerate case of the foregoing cascade
problem in which the upstream and downstream velocities
are equal and the spacing of the cascade becomes infinite.
In this case, the singuhr points f=a.l and ~=az move to
Mnity and the complex potential l’(~) for the incompressible
flow about the unit circle (equation (2)) becomes

F(f)=–v(r++)+&.Iog r+~ (63)

where V is the incompressible free-stream -reIocity amdis in
the direction of the negative g-axis. The mapping function
(equation (3)) becomes (reference 6)

dz =g(f) d+ [F’(t)] ’[g(()]-’ dt (64)

where g(f) satisfies the following requirements:

(a) The function g(f) is reguhr in the closed region
R defied by [rl>l.

(b) The fumtion g(r) #0 in R, except possibly at
one point on the circle where F’(~)= O (the order of
the zero not to exceed 1).

1

(65)

(c) Along the circle I(] =1,
$

dz=o. ‘

(d) The function g(~) satisfies the inequality

l[F’(f)l [g(r)] -’l<2 in R

The velocity potential +. and the stream function YCin
the z-plane are given by

4d-&=Nr)

The magnitude g and t-he direction a of
velocity in the z-plane are given by

(66)

the dimensionIess

(67)
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In order to use the preceding transformation, the prescribed
velocity distribution along the airfoil g=q(s) and the free-
stream velocitry qlef”l are used to select the flow- about t-he
unit.circle and to determine the function g(f). For the actual
computation of t-heairfoil, only the values of the functions
for points on the unit circle are needed.

FLOW IllCIBCLE PLKSE

For points on t-he circle. ~=efe, the complex potential
(equation (63)) reduces to

+f(o= —2V(COS6—COSet)+~(e—d,) (68)

when D is so chosen that @i= Oat the trailing-edge stagnation
point f=eie~ (fig. 3). The velocity is

a(e)=—ie. ( )-id 2V sin (?+$: (69)

Both b,(e)
and 6~are

and v(8) are completely determined when I’~, T7,
known. These quantities are obtained from the

I .—.wi’T

—.—
f=ei6t

Troilinq-edge
.+agnafion paint

I
et

FIGKEE 3.—Vsriables in circle plan?.

prescribed velocity distribution by determining 4.(s.) and 17.
from equations (9) and (10), respectively. By equation (66),
the potentials are equal at corresponding points so that

@f,mfn=h,min=d.(~n)

ri=rc 1

Then t?,is given by (reference 2)

(70)

and ~7is given by

v=– 9 1’=
4rsln %t=—4zsin 6t

(72)
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The flow about the circle is obtained by using these vahes of
I’,, V,and6, inequa.tions (68) and (69).

FUNCTION g(f)

As in the cascade case, if an airfoil with a pointed tail is
desired, g(t) must vanish at the trailing-edge stagnation
point, f=eio’. Hence, g(t) can be written in the form

(73)

where j(~) is regulm in the exterior of the unit cirole and

~=p—!
21- (41)

By using the prescribed velocity distribution on the airfoil
and the circle velocity, the real part of j(~) can be computed
for points on the circle and the imaginary part of f(~) can
then be obtained by Poisson’e integral. Hence g(f) wouId
be determined. Because of the restrictions on j(f), this
computational procedure is modified as shown in the next
sections,

Restrictions on j(f) .—Becmise the free-stream velocity is
given for the compressible flow, the value of g(~) at infinity
is determined by equation (67)

*
ve~k~h)

;~: g(f)= ~ .
1

where

K,=
2(J

~+%.w --.-:-.

By writing

f(t)= be+++++ . . .

where bO,61,b?, . . . are complex constants, then

Re (bo)=loge~

Im (bo)=M+r }

(74)

.

(75)

Hence, the desired free-stream velocity will be obtained if
bOsatisfies equation (75).

Further restrictions are imposed on j(f) by the requirement

When the residues of these functions at infinity are con-
sidered, this requirement can be expressed in a more usefuI
form: ‘The fun&ion g(f) may be ~~rittenas

[
g(f)=db 1+ bl-tneiO’+terms in +~ j>2

1

and then

$
9(~) dt=2tie00(fiI-nei~~)

I?rom the incompressible flow about the oide,

(77)

F’(r) 2vi sine,+v=–v+ ~ p

and

([F’(()] ’[g(()]“=e-~o v2– 4V2i sin ol—nVzeiO~+bl~”z
r

+

terms in -$, j> 2
)

therefore

$[l’’(~)] ’[g(~)] -’d~= –2rie-~o(4V2i sin 6,–n’$~’e”t+ b,lr~

(78)

Then, by use of equations (77) n.nd (78), equation (76)
becomes

2~ieb0 (bl—mef@;j+; 27rie-bOV2 (4i sin t?l-nefo~+ bl)= O

Equating the real parts of equation (79) gives

( )~ (Re b,–ncos &)=Oe2Rebo__

But ~2Rebo_~ cannot be zero except for zero free-strmm

velocity, hence
Re bl=n cos e, (80)

The imaginary parts of equation (79) give

ezn~bo(Im bl—n sin 6J+~ (Im bl—n sin t9J+V2 sin fl~=Cl

or

Im bl=n sin &-
Vysin 6(

V2
e2Rebo+T

But from equation (75)

e2R,bo=~
K,’

hence .-

(81)
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Consequently, equation (76) will be sat.tied if Re b, and Im bl
satisfy equations (80) and (81), respectively.

For convenience in computation, these restrictions on the
values b. and bl are transformed into restrictions on the
values of l?ef(e~q . For points on the chde,

f(ei~=Be j(ei~+iIrn f (ei~= bo+$+$+ . . .

=RebO+~ (Be b, cos jt+.lm bj sin j~)+

[
i Im bo+ ~l(Im bj cos j8—Re b~sin jt))

1
(82)

Equation~(82) is a Fourier expansion and

(83)

(84)

(85)

Substitution of these values of Re ba,Re b,, ancl Im bl in equa-
tions (75), (80), and (81), respectively, gives

(86)

(87)

Hence, Ref(e”) must satisfy equations (86) to (88).
Determination of Ref(eid) .—By matching t-he potentials

44 and @i(@), a correspondence is established between
points on the a.irfoiIand the circle cmgles. The prescribed
velocity distribution along the airfoil can therefore be written
as a function of the circle angle g=q (6). Tt%en absolute
values of equatiion (67) are taken,

(89)

for points on the circle. By replacing F’ (eie) by the relocity
r(d) (equation (69)) and substituting g(f) from equation (73)
with ~= eia,equation (89) becomes

2@)
217 sin .9+ g;

~+ T’==p _9 Cos (6,_q]feRef@i’)-.

or, with the equation solved for Ref(efe),

2 v sin o+?
Ref (efe)=log. (90)

[2–2 cos (w’)]%(d)

where

K(e)= 2~(e)
1+ ,Il+cfyo)

The values of Re~(efe), as given by equation (90), must
satis~ equations (86) to (88). If these equations are not
satisfied, the values of Ref(ei~ must be adjusted until the
equations are satisfied. One method for adjusting the
function is to define

( )Re~(ei~=Ref (ei~– Re bo—~og.~ –(Re b,–n cos e,) cos e–

[ ( )1
Im b,—sin 6J, n—~z Sk e (91)

where Re bO,Re bl, ancl h bl are given by equat$ns (83),
(84), and (85), respectively. The function Ref(ef’) will
satisfy equations (86) to (88]. If the corrections are large,
this method may result in large changes in the velocity.
b general, the methocl used for adjusting Re~(ef8) will
depencl on the spec.fic probkm.

Determination of lm f (ei@).—WhenRef (ei@)satisf~g equa-
tions (S6) to (88) is obtained, Im ~(e’8) is computed. by
Poisson’s integral

where the constant term in the integml has been taken
equal to al+ T, so that

J

et+ti
Iri bO=& ~, Imf (ef~ de= CY1+F

as required by equation (75). Hence j(effl) is now known
for points on the circle:

j(e’~=Ref (ef~+iImf (ei~

Determination of g(ef~ .—BY use of these values of ~(eio)
in equation (73), g(t) is cletermined for points on the circle:

g(ei~= [1—e~(@~–@)].eff@~ (93)

Because of the changes made in Ref (e*@)to satisfy equations
- (86) to (88), g(e”) may no longer satisfy condition (65d).
If g(ezo) cloes not satisfy the inequa.lity, g(~) can be adjusted
by changing the second or higher harmonic terms in f(eto),
or by some similar method.

MRFOIL COORDXATES

The function g(~) has been obtained to satisfy all require-
ments; hence! the airfofi coordirmtes in the z-plane are gi-i-en
by equation (64) on integrating around t-beunit circle. For
convenience, let g(ei$) be vzritten as

g(et~=g,(e)eiuzfe)

!E6646-51-i
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From equation (64) the airfoil coordinates are then

( ))7* 2

J

4gt– 2vsin e+~T
~=—

4gl
sin (g,+8) cZ6 (94)

4g12–
(

Zvsin @ 2

?/= J
)

4gl
2T COS (g~+(?)dd (95)

COMPUTATIONAL PROCEDURE FOR ISOLATED AIRFOIL

An outline of the procedure for computing the airfoil
follows :

1. Obtain 4.(s), I’., and 4.(s,) from equations (9) and (10).
By use of these values in equations (71) and (72), obtain
O,and V, respectively. Then calculate @t(@)and v(d) from
equations (68) and (69), respectively.

2. Plot d.(s) and @t(t?). By comparing equal ,values of
these potentials, obtain s as a function of 6, which permits
writing the prescribed velocity g as a function of O,q=q(d).

3, Compute -Rej(eio) by equation (9o); this function must
satisfy equations (86) to (88). If these equations are not
satisfied, l?ej(efo) is adjusted to satisfy them as suggested by
equation (91) or by similar methods.

4. Obtain Im .~(e~e)from equation (92) and compute
g(e’”) by equation (93). These values of g(eio) should be
checked in inequality (65d). If g(efo) does not satisfy the
inequality, it is further modified as previously suggested.

5. By ’”use in equations (94) and (95) of the values of
g(eiU)that satisfy alI requirements, the airfoil coordinates are
obtained by integration.

ILLUSTRATIVE EXAMPLES

Isolated airfoil.—l?or this example, the prescribed veIocity
q=g(s) was obtained from the incompressible veIocity dis-
tribution about a symmetrical Joukowski profile, as com-
puted by Lipman Bers at Syracuse University in the form
of the ratio of actual velocity to free-stream velocity, by
taking the dimensiordess free-stream velocity to be 0.538.
The resulting distribution ,is shown in figure 4 with the final
velocity after adjusting Re j(eti). The computed profile
(fig. 5) is slightly thicker than the Joukowski profile toward
the nose and has some reflex camber. The peaks in the
veIocity distribution about the computed profile are lower
than those that wo.uldoccur in a compressible flow about the

J?IfiURE4,—Comparison of prescribed velocity and iinsl velocity distributions for alrfo!l.

Joukowski profile with the same free-stream velocity and
angle of attack because: (1) the circulation was Iccpt tho
same as for the incompressible flow, which resultcd in the
reflex camber; and (2) the thickening of the profile rcduccd
the curvatures in the vicinity of the velocity peaks.

o Joukowski Profile
— Compted profile

FIGURE5.—Comprmisonof computedprofileandJoukowsk[profllc.

Cascade,—For this example, it was decided to design
cascade of blades having cuspccl tails and n vclocity clistri-
}bution along the blade like the distribution in t-heforegoing
isolated-airfoil example. The free-stream COllClitiOIIS~IjIII,

and az were arbitrarily taken as

g,= O.576

al=lo”

which gives

Adjustments to ReH(e.”) to satisfy equations (86) to (8S)
moditied the prescribed velocity somewhat and the final
velocity is shown in figure 6. Figure 7 is the computed
cascade.

FIGURE6.—Vclocity dktribution on cascadeblodc.

I

% ‘0.564

FIGURE7. Twoblidesofcomputedcaseado.

1
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CONCLUDING REMARKS

The magnitucle of the dimensionless velocity along the
blade cannot. be eritirely prescribed arbitrarily as a function
of the arc length, but is subject to some restrictions in ttcMi-
tion to the conditions imposed on the regular functions H(r)
and f(t). The maamitucle must. be finite e~erywhere along
the profiIe and, by the method given, the velocity can be
zero in, at most, two places—the leading-edge and the
trailing-edge sta=ggmtionpoints. By a limiting process,
hovwrer, the method can be e----tendedto proticle for addi-
tional staamationpoints. The order of the zero of the dimen-
siordess velocity at the trailing edge is determined by the
included trailing-edge angle of the blade. Thus, for a cusp
at. the tail, the angle is zero and the dimensionless velocit.y
need not be zero a; the traiIing edge.

SYMBOLS

The following symbols are used in

A,B, C,, C,, D
al, a2, . . .
c(f)
d
F(r)

f(t)
9(r)
H(r)
Re fi(~)

Im
K(e)

h’,
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If a -reIocity distribution is selected to satisfy these con-
ditions, but othertise is arbitrary, the resulting profile may
not be a physically red blade but may result in a blade with
zero or negative thickness in some portions of the blade.
The zero or negative thickness is caused by specifying too-low
velocities along parts of the blttde; a physically real blade
can be obtained by increasing the prescribed -relocity along
the blade.

NTATIOATAL~DVISORT COM.WPTEE FOR Amtomumcs,
LEWIS JILIGHT PROPLTLSION LABORATORY,

CLEVELAND, OHIO, Wober 1, 1949.

APPENDLX

this report:
corndex constants
Iocaiion of comphxysourms in ~-plane
function of r defied by equation (44)
spacing of cascade
complex potential function (incompressible

flow)
regular function of r
regular function of f
regular function of ~
function of f defined by equation (59)

imaginary part
function of 0 defied by equation (49)

constant equal to ~ql
l+\~

w2
constant equal to

1+~~

constant. defined by equations (33)
number determined by included traiIing-edge

angle of blade
pressure
au.siIiaryfunction ofs
Ma,gfitude of dimensio~ess velocity iII

compressible-flow plane (ratio of actual
velocit.y to stagnation velocity of sound)

dimensionless velocity upstream of cascade
dimensionless velocity downstream of cascade
region in t-plane defined by Ifl>1
real part
number defined by equation (23)
arc length a~ongbIade
free-stream velocity (incompressible flow)
velocity on unit circle (incompressible flow)
complex variable (compressible-ffow plane)

CY

r
7
8

[=t+iq

9

k

P

;

#

Subscripts:
c
i
n
t

angle of velocity in compressible flow (meas-
ured from positive x-a.sis)

circulation
ratio of spechlc heats
included traihg-edge angle of blade
complex variable (incompressible-flow plane)
circde angle (incompressible-ficm-plane)
auxiliary variable defined by equation (37)
density
variable of integration
velocity potential
stream function

compressible flow
incompressible flow
leading edge
trailing edge

Prime indicates a derivative.
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